1、一般來說,設函數y=f(x)(x∈A)的值域是C,若找得到一個函數g(y)在每一處g(y)都等於x,這樣的函數x=g(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,記作y=f-1(x)。反函數y=f-1(x)的定義域、值域分別是函數y=f(x)的值域、定義域。最具有代表性的反函數就是對數函數與指數函數。
2、一般地,如果x與y關於某種對應關系f(x)相對應,y=f(x),則y=f(x)的反函數為x=f(y)或者y=f-1(x)。存在反函數(默認為單值函數)的條件是原函數必須是一一對應的(不一定是整個數域內的)。註意:上標1指的是函數冪,但不是指數冪。