多邊形的內角和 多邊形內角和定理證明

多邊形的內角和 多邊形內角和定理證明

1、任意正多邊形的外角和=360°。

2、正多邊形任意兩條相鄰邊連線所構成的三角形是等腰三角形。

3、多邊形的內角和定義:〔n-2〕×180°(n為邊數)。

4、多邊形內角和定理證明:在n邊形內任取一點O,連結O與各個頂點,把n邊形分成n個三角形。因為這n個三角形的內角的和等於n·180°,以O為公共頂點的n個角的和是360°所以n邊形的內角和是n·180°-2×180°=(n-2)·180°.(n為邊數),即n邊形的內角和等於(n-2)×180°.(n為邊數)。

如何挑選純正的燕窩 師范大學畢業出來就可以當老師嗎 如何查醫保卡餘額 人有負鹽負薪者文言文翻譯 人有負鹽負薪者文言文原文及譯文欣賞 廣安旅遊景點介紹 歷史文化遺產 麒麟怎麼讀 麒麟的含義
热门文章
为你推荐