1、多邊形的外角和是360度。
2、證明過程如下:設多邊形的邊數為n,則其內角和=(n-2)*180°,因為n邊形有n個頂點,每個頂點的一個外角和相鄰的內角互補,等於180°,所以n邊形的外角和等於n*180°-(n-2)*180°等於360°,即n邊形的外角和等於360度。
1、多邊形的外角和是360度。
2、證明過程如下:設多邊形的邊數為n,則其內角和=(n-2)*180°,因為n邊形有n個頂點,每個頂點的一個外角和相鄰的內角互補,等於180°,所以n邊形的外角和等於n*180°-(n-2)*180°等於360°,即n邊形的外角和等於360度。