1、“大數據”是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
2、麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出瞭傳統數據庫軟件工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特征。
3、大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的“加工能力”,通過“加工”實現數據的“增值”。
4、從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單臺的計算機進行處理,必須采用分佈式架構。它的特色在於對海量數據進行分佈式數據挖掘。但它必須依托雲計算的分佈式處理、分佈式數據庫和雲存儲、虛擬化技術。
5、隨著雲時代的來臨,大數據(Bigdata)也吸引瞭越來越多的關註。大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型數據庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯系到一起,因為實時的大型數據集分析需要像MapReduce一樣的框架來向數十、數百或甚至數千的電腦分配工作。
6、大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)數據庫、數據挖掘、分佈式文件系統、分佈式數據庫、雲計算平臺、互聯網和可擴展的存儲系統。